Project information
- Category: Original Research
- Researchers:: Santiago, M., Gademsey, A., Shahidi, R., Greenberg, S., Brower, M., Rashid, M., Kasper, B., Kasper, H., Perera, I., Marvin, E.
Abstract
Glioblastoma multiforme (GBM), WHO Grade IV astrocytoma, accounts for 50.1% of all malignant brain tumors, the most common primary brain tumor. Typically, both primary and secondary GBM treatment regimens modify the traditional Stupp Regimen including gross total resection, chemotherapy, and radiotherapy; however, regardless of the developed therapeutic plan the disease courts a poor median survival of 14 months. This comprehensive systematic review of novel therapeutic approaches to GBM treatment aims to provide an extensive catalog of treatment regimens, clinically significant benefits such as median survival time and progression-free survival, and to provide a recommendation of the best novel approaches for further study. Novel treatment methods including tumor-treating fields (TTFields), carmustine wafers, viral therapy, and lab-synthesized molecules, such as Hyaluronic acid (7 kDa)-b-polylactic acid (HA7-PLA) polymersome purport positive outcomes between 17.5 to 36 months of median survival. TTFields in addition to Temozolomide (TMZ) when compared to TMZ alone resulted in 2.7 additional months of progression-free survival and 4.9 to 5.2 months of added median survival time. Placement of greater than 12 carmustine wafers at initial resection improved progression-free survival by 21 months and median survival by 22.5 months. Additionally, wafer placement after recurrence surgery increased median survival time by 3.5 months. Viral therapy, recombinant non-pathogenic polio-rhinovirus chimera (PVSRIPO), extended median survival by 24 to 36 months. Synthesized molecules, such as HA7-PLA polymersome, are some of the most novel approaches to GBM treatment, thus they are currently discussed without human application data. Completion of this comprehensive review will produce an up-to-date list of novel and experimental treatment approaches with reported clinically significant data points - median survival time and progression-free survival. In turn, this study will elucidate the most clinically significant novel approaches to GBM treatment based on the most current published treatment approaches, this may then be used as a guide for future study design and reference.
References
1. Ostrom, Q. T., Price, M., Neff, C., Cioffi, G., Waite, K. A., Kruchko, C., &
Barnholtz-Sloan, J. S. (2022). CBTRUS statistical report: Primary Brain and other
central nervous system tumors diagnosed in the United States in 2015–2019.
Neuro-Oncology, 24(Supplement_5), v1–v95. https://doi.org/10.1093/neuonc/noac202
2. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J.
B., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., Curschmann, J., Janzer, R.
C., Ludwin, S. K., Gorlia, T., Allgeier, A., Lacombe, D., Cairncross, J. G., Eisenhauer,
E., & Mirimanoff, R. O. (2005). Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. New England Journal of Medicine, 352(10), 987–996.
https://doi.org/10.1056/nejmoa043330
3. Rodríguez-Camacho, A., Flores-Vázquez, J. G., Moscardini-Martelli, J., Torres-Ríos,
J.
A., Olmos-Guzmán, A., Ortiz-Arce, C. S., Cid-Sánchez, D. R., Pérez, S. R.,
Macías-González, M. D., Hernández-Sánchez, L. C., Heredia-Gutiérrez, J. C.,
Contreras-Palafox, G. A., Suárez-Campos, J. de, Celis-López, M. Á., Gutiérrez-Aceves, G.
A., & Moreno-Jiménez, S. (2022). Glioblastoma treatment: State-of-the-art and future
perspectives. International Journal of Molecular Sciences, 23(13), 7207.
https://doi.org/10.3390/ijms23137207
4. Xiao, Z.-Z., Wang, Z.-F., Lan, T., Huang, W.-H., Zhao, Y.-H., Ma, C., & Li, Z.-Q.
(2020). Carmustine as a supplementary therapeutic option for glioblastoma: A systematic
review and meta-analysis. Frontiers in Neurology, 11.
https://doi.org/10.3389/fneur.2020.01036
5. Şenkesen, Ö., Tezcanlı, E., Abacıoğlu, M. U., Özen, Z., Çöne, D., Küçücük, H.,
Göksel,
E. O., Arifoğlu, A., & Şengöz, M. (2022). Limited field adaptive radiotherapy for
glioblastoma: Changes in target volume and organ at risk doses. Radiation Oncology
Journal, 40(1), 9–19. https://doi.org/10.3857/roj.2021.00542
6. Guevara, B., Cullison, K., Maziero, D., Azzam, G. A., De La Fuente, M. I., Brown, K.,
Valderrama, A., Meshman, J., Breto, A., Ford, J. C., & Mellon, E. A. (2023). Simulated
adaptive radiotherapy for shrinking glioblastoma resection cavities on a hybrid
MRI–linear accelerator. Cancers, 15(5), 1555.
https://doi.org/10.3390/cancers15051555
7. Matsuyama, T., Fukugawa, Y., Kuroda, J., Toya, R., Watakabe, T., Matsumoto, T., &
Oya,
N. (2022). A prospective comparison of adaptive and fixed boost plans in radiotherapy
for glioblastoma. Radiation Oncology, 17(1).
https://doi.org/10.1186/s13014-022-02007-4
8. VÉGVÁRY, Z., DARÁZS, B., PACZONA, V., DOBI, Á., REISZ, Z., VARGA, Z., FODOR, E.,
CSERHÁTI, A., OLÁH, J., KIS, D., BARZÓ, P., & HIDEGHÉTY, K. (2020). Adaptive
radiotherapy for glioblastoma multiforme – the impact on disease outcome. Anticancer
Research, 40(8), 4237–4244. https://doi.org/10.21873/anticanres.14425
9. Omuro, A., Brandes, A. A., Carpentier, A. F., Idbaih, A., Reardon, D. A., Cloughesy,
T.,
Sumrall, A., Baehring, J., van den Bent, M., Bähr, O., Lombardi, G., Mulholland, P.,
Tabatabai, G., Lassen, U., Sepulveda, J. M., Khasraw, M., Vauleon, E., Muragaki, Y., Di
Giacomo, A. M., … Weller, M. (2023). Radiotherapy combined with nivolumab or
temozolomide for newly diagnosed glioblastoma with unmethylated mgmtpromoter: An
international randomized phase III trial. Neuro-Oncology, 25(1), 123–134.
https://doi.org/10.1093/neuonc/noac099
10. Liau, L. M., Ashkan, K., Tran, D. D., Campian, J. L., Trusheim, J. E., Cobbs, C. S.,
Heth, J. A., Salacz, M., Taylor, S., D’Andre, S. D., Iwamoto, F. M., Dropcho, E. J.,
Moshel, Y. A., Walter, K. A., Pillainayagam, C. P., Aiken, R., Chaudhary, R., Goldlust,
S. A., Bota, D. A., … Bosch, M. L. (2018). First results on survival from a large phase
3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed
glioblastoma. Journal of Translational Medicine, 16(1).
https://doi.org/10.1186/s12967-018-1507-6
11. Desjardins, A., Gromeier, M., Herndon, J. E., Beaubier, N., Bolognesi, D. P.,
Friedman,
A. H., Friedman, H. S., McSherry, F., Muscat, A. M., Nair, S., Peters, K. B., Randazzo,
D., Sampson, J. H., Vlahovic, G., Harrison, W. T., McLendon, R. E., Ashley, D., &
Bigner, D. D. (2018). Recurrent glioblastoma treated with recombinant poliovirus. New
England Journal of Medicine, 379(2), 150–161. https://doi.org/10.1056/nejmoa1716435
12. Dighe, O. R., Korde, P., Bisen, Y. T., Iratwar, S., Kesharwani, A., Vardhan, S., &
Singh, A. (2023). Emerging recombinant oncolytic poliovirus therapies against malignant
glioma: A Review. Cureus. https://doi.org/10.7759/cureus.34028
13. Harter, D., Wilson, T., & Karajannis, M. (2014). Glioblastoma multiforme: State of
the
art and Future Therapeutics. Surgical Neurology International, 5(1), 64.
https://doi.org/10.4103/2152-7806.132138
14. Hawasli, A. H., Bagade, S., Shimony, J. S., Miller-Thomas, M., & Leuthardt, E. C.
(2013). Magnetic resonance imaging-guided focused laser interstitial thermal therapy for
intracranial lesions. Neurosurgery, 73(6), 1007–1017.
https://doi.org/10.1227/neu.0000000000000144
15. Sloan, A. E., Ahluwalia, M. S., Valerio-Pascua, J., Manjila, S., Torchia, M. G.,
Jones,
S. E., Sunshine, J. L., Phillips, M., Griswold, M. A., Clampitt, M., Brewer, C., Jochum,
J., McGraw, M. V., Diorio, D., Ditz, G., & Barnett, G. H. (2013). Results of the
NeuroBlate system first-in-humans phase I clinical trial for recurrent glioblastoma.
Journal of Neurosurgery, 118(6), 1202–1219.
https://doi.org/10.3171/2013.1.jns1291
16. Shergalis, A., Bankhead, A., Luesakul, U., Muangsin, N., & Neamati, N. (2018).
Current
challenges and opportunities in treating glioblastomas. Pharmacological Reviews, 70(3),
412–445. https://doi.org/10.1124/pr.117.014944
17. Campelo, S. N., Lorenzo, M. F., Partridge, B., Alinezhadbalalami, N., Kani, Y.,
Garcia,
J., Saunier, S., Thomas, S. C., Hinckley, J., Verbridge, S. S., Davalos, R. V., &
Rossmeisl, J. H. (2023). High-frequency irreversible electroporation improves survival
and immune cell infiltration in rodents with malignant gliomas. Frontiers in Oncology,
13. https://doi.org/10.3389/fonc.2023.1171278
18. Idbaih, A., Canney, M., Belin, L., Desseaux, C., Vignot, A., Bouchoux, G., Asquier,
N.,
Law-Ye, B., Leclercq, D., Bissery, A., De Rycke, Y., Trosch, C., Capelle, L., Sanson,
M., Hoang-Xuan, K., Dehais, C., Houillier, C., Laigle-Donadey, F., Mathon, B., …
Carpentier, A. (2019). Safety and Feasibility of Repeated and Transient Blood–Brain
Barrier Disruption by Pulsed Ultrasound in Patients with Recurrent Glioblastoma.
Clinical Cancer Research, 25(13), 3793–3801.
https://doi.org/10.1158/1078-0432.CCR-18-3643
19. Ringel-Scaia, V. M., Beitel-White, N., Lorenzo, M. F., Brock, R. M., Huie, K. E.,
Coutermarsh-Ott, S., Eden, K., McDaniel, D. K., Verbridge, S. S., Rossmeisl, J. H.,
Oestreich, K. J., Davalos, R. V., & Allen, I. C. (2019). High-frequency irreversible
electroporation is an effective tumor ablation strategy that induces immunologic cell
death and promotes systemic anti-tumor immunity. EBioMedicine, 44, 112–125.
https://doi.org/10.1016/j.ebiom.2019.05.036
20. D’Amico, R. S., Aghi, M. K., Vogelbaum, M. A., & Bruce, J. N. (2021).
Convection-enhanced drug delivery for glioblastoma: A Review. Journal of Neuro-Oncology,
151(3), 415–427. https://doi.org/10.1007/s11060-020-03408-9
21. Maier-Hauff, K., Ulrich, F., Nestler, D., Niehoff, H., Wust, P., Thiesen, B., Orawa,
H.,
Budach, V., & Jordan, A. (2010). Efficacy and safety of intratumoral thermotherapy using
magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients
with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 103(2), 317–324.
https://doi.org/10.1007/s11060-010-0389-0